The strain of E. coli responsible for the 2011 European outbreak was equipped with the genetic weaponry to cause not only gastrointestinal illness, which includes bloody diarrhea, but also a potentially fatal condition called hemolytic-uremic syndrome, which can lead to kidney failure. Investigations of this outbreak impacted international politics and deployed cutting-edge technologies, ultimately demonstrating just how much these little microbes can disrupt our carefully constructed human lives.
Electron micrograph of E. coli bacteria, magnified 10,000X. |
German health officials first observed an increase in cases of E. coli infection in early May 2011. Although the outbreak centered in Germany, cases were reported across Europe and as far away as the United States, mostly due to people who travelled to Germany, ate contaminated food and then returned home. The graphic below shows the distribution of cases across Europe at the mid-point of the outbreak.
It's not that unusual for health agencies to deal with
outbreaks of foodborne illness. For example, E. coli infections in the United States account for about 265,000
illnesses and 100 deaths each year. But from the beginning, there was clearly
something unusual about this outbreak. For starters, most E. coli infections affect children, elderly people and others whose
immune systems aren't as strong as healthy, middle-aged adults. With this
outbreak, investigators noticed that more adults were affected than usual.
Also, the percentage of patients developing the dangerous hemolytic-uremic
syndrome was higher with this outbreak. Obviously, this was not a run-of-the-mill
E. coli outbreak.
Investigating a disease outbreak involves identifying the
culprit, determining how that culprit is spreading through communities and
tracking it back to its original source. This field of science is called
infectious disease epidemiology. Once the E.
coli outbreak was detected, epidemiologists and other scientists got to work
collecting data from patients and testing possible sources of the bacterium,
which is typically contaminated food. This is where microbiology gets
political.
This was small consolation to Spanish agriculture, which
projected losses of $290 million a week as a result of the warnings and bans.
Spain furiously accused Germany of incompetence at best and irreparable damage
to a rival agricultural industry at worst. All this over a microbe! But the
health and economic impacts of microbes are serious business, as this outbreak
showed.
On the positive side of things, the 2011 European E. coli outbreak marked a leap forward
in how new sequencing technologies can enhance investigations of disease
outbreaks. Over the past few years, tremendous advances have been made in DNA
sequencing. Sequencing an organism's genome essentially gives you the ultimate
information manual for that organism. In 1997, researchers released the very
first DNA sequence for a strain of E.
coli. It took these scientists 15 years to produce that information manual.
During the 2011 outbreak, researchers completed a draft of the DNA sequence for
the strain of E. coli involved in the
outbreak in three days. Three days! This information, made possible by new
sequencing technologies, allowed real-time outbreak analysis, including
accurate patient diagnosis and strain tracking. Researchers and companies are
continuing to improve methods of DNA sequencing and analysis, and these
technologies will become important tools in infectious disease epidemiology.
So there it is! The tale of a humble microbe that wreaked
havoc across Europe, sickening thousands and throwing a wrench in international
diplomacy but at the same time providing a testing ground for some of science's
greatest new achievements. All in a day's work for E. coli.
Sources:
http://www.time.com/time/world/article/0,8599,2075333,00.html
http://www.cnn.com/2011/WORLD/europe/06/01/spain.germany.e.coli/index.html
http://www.euro.who.int/en/what-we-do/health-topics/emergencies/international-health-regulations/news/news/2011/07/outbreaks-of-e.-coli-o104h4-infection-update-30
http://www.nature.com/news/2011/110721/full/news.2011.430.htmlE. coli micrograph is available through Wikimedia Commons. Credit: Eric Erbe and Christopher Pooley of USDA ARS.
Map of outbreak cases uses data from the World Health Organization and was made by Smart Draw, LLC to demonstrate their software (www.smartdraw.com).
No comments:
Post a Comment